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PARAMETER SAMPLING AND METAMODEL GENERATION 
FOR NONLINEAR FINITE ELEMENT SIMULATIONS 

A.L. Cundy', J.F. Schultze2, F.M. Hemez3, S.W. Doebling4, J. Hylok', D. Bingham6 

Los Alamos National Laboratory 
Engineering Sciences and Applications Division 

Weapon Response Group 
P.O. Box 1663 MS P946, Los Alamos, New Mexico 87545 

ABSTRACT 

This research addresses the problem of analyzing the nonlinear transient response of a structural 
dynamics simulation. A threaded joint assembly's response to impulse loading has been 
studied. Twelve parameters relating to the input level, preloads of the joint and friction between 
components are thought to influence the acceleration response of the structure. Due to the high 
cost of physical testing and large amount of computation time to run numerical models a fast- 
running metamodel is being developed. In this case, a metamodel is a statistically developed 
surrogate to the physics-based finite element model and can be evaluated in minutes on a single 
processor desktop computer. An unreasonable number of runs is required (312>500,000) to 
generate a three level full factorial design with 12 parameters for metamodel creation. Some 
manner of down-selecting or variable screening is needed in order to determine which of the 
parameters most affect the response and should be retained in subsequent models. A 
comparision of screening methods to general sensitivity analysis was conducted. A significant 
effects methodology, which involves a design of experiments technique has been examined. In 
this method, all parameters were first included in the model and then eliminated on the basis of 
statistical contributions associated with each parameter. Bayesian variable screening 
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techniques, in which probabilities of effects are generated and updated, have also been explored, 
Encouraging results have been obtained, as the two methods yield similar sets of statistically 
significant parameters. Both methods have been compared to general sensitivity analysis 
(GSA). The resulting compact metamodel can then be explored at more levels to appropriately 
capture the underlying physics of the threaded assembly with a much smaller set of simulations. 

KEYWORDS 

Metamodel, structural dynamics simulation, general sensitivity analysis, linear variable 
screening, Bayesian variable screening 

INTRODUCTION 

A threaded joint assembly (Figure 1) has been 
studied to determine its response to impulse 
loading from the side. The assembly has parts 
made of steel, Titanium and Aluminum, as well as 
threaded joints and a unique “tape joint.” To date 
four physical tests have been conducted, in which 
shell tolerances and “gaps” between the shell and 
mount were varied (due to scheduling, physical 
tests had to be conducted before the finite element 
model was completed. A charge array was attached 
to one side of the assembly and detonated. 
Acceleration responses were monitored at the top 
and bottom of the assembly, as well as between the 
upper and lower mass simulators (see Figure 1). 
While much information was gained from the tests, 
it is economically prohibitive to conduct a 
sufficient number to generate a response surface. 

Figure 1 : Physical testing set up of the threaded 
assembly. The charge array is held in place with 
foam blocks at the lower right of the photo. 

In order to study the assembly in greatel detail, a large finite element model (FEM) was created 
(>1 million elements and 4 million degrees of freedom). The model can be run on the 
Laboratory’s ASCI (Accelerated Strategic Computing Initiative) super-computer, Blue 
Mountain. However, because Blue Mountain requires about three hours using 504 processors to 
run three milliseconds of simulation time it is still impractical to execute a large number of runs 
for response surface generation. 

From the finite element run results, twelve parameters were identified as being potentially 
important to the response of the assembly. They relate to dynamic and static coefficients of 
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friction between the different parts, the preloads, and the input level. Parameters, or factors, 
were set at discrete levels for each experiment and coded to unitless values. 

Multiple features were derived from the acceleration time history data. Time histories were 
transformed to yield power spectral densities (PSDs) and shock response spectra (SRSs). Then 
moments were taken of each of these functions, with the lowest order being the energy (E) and 
the second and third order moments called Tau and D. Equation 1 is a general equation for 
talung the ith temporal moment, Mi, of function f(t) about time t=O. 

MI = ft1f(t)2dt (1) 
-m 

Design of experiments (DOE) methods are being explored to create a fast-running model, or 
metamodel, that is based only on model parameters that affect the response. A Taguchi 64 
orthogonal array, alias free for quadratic and some cubic terms, was used. Using DOE, an 
Analysis of Variance (ANOVA) is generated using data from finite element runs, in order to 
estimate a polynomial (which can be nth order, depending on the number of runs available) that 
relates parameters to responses. 

A concern with developing a metamodel is that as more parameters are included in the model, 
more FEM runs are required to generate the model. A three level design incorporating all 
twelve parameters would require over 500,000 runs for a full factorial design, thus defeating the 
simplifying purpose of the metamodel. A fractional factorial design can be implemented to 
reduce the number of runs required for a given model, while increasing the model order. 
However, the use of fewer runs for the creation of a higher order model leads to aliasing of 
some terms which must then be omitted; therefore it is still desirable to keep as many runs as 
possible. A design with twelve parameters might be run with as few as 6000 runs, but would be 
heavily aliased. A variable screening process must be implemented in order to reduce the 
dimension of the response space so that a model may be designed without too many aliased 
terms. 

GENERAL SENSITVITY ANALYSIS 

General sensitivity analysis (GSA) was conducted for a quick way of looking at important 
parameters. Parameters A, B and C were not included in the general sensitivity analysis. They 
were held constant at their nominal values because of difficulty in setting preloads (each preload 
requires ten extra runs to set because they cannot be set directly). A set of finite element runs 
were executed with each parameter set at its high and low values and one run with all 
parameters set at their nominal values (19 runs total). P,arameter importance was defined as any 
parameter causing a relatively large difference in model response between its high and low 
values (as calculated using simple finite differencing). This method does not account for higher 
order effects and interactions. Results from this exercise showed that parameters L and M (St- 
Ti kinetic friction, input load level) were important to model features, with H, K and J (AI-A1 
lunetic friction, Ti-Ti kinetic friction, AI-Ti kinetic friction) appearing also, though at a lesser 
magnitude. 

SIGNIFICANT EFFECTS METHOD OF VARIABLE SCREENING 

Another method of variable screening implemented was analysis of significant effects, or linear 
variable screening. A particular main effect's contribution (no higher order effects) to the total 
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model variance was analyzed. Significant effects method provides an advantage over GSA 
because a probabilistic assessment of variable importance is obtained through the analysis of 
variance. Screening was done using a two level fractional factorial design. Features which did 
not result in a high enough total variance contribution (<30%) were discarded because they did 
not sufficiently discriminate between runs. Results from this screening of the E features of 
Accelerometer 3 are shown in Figure 2. It can be seen that effects K, L, and M were found to be 
important parameters. Effect A was also found to be an important parameter to other features. 
These variables correspond to the tape joint preload, kinematic frictions between parts (AI-Ti, 
Steel-Ti) and input scaling. Results agreed with the GSA. The results were not intuitive; the 
thread preloads (B and C) were expected to have more impact on the response, because they 
appear to be more directly tied to the upper and lower mass simulators, but neither of these 
effects were screened as important. This lead to a desire to corroborate results with another 
screening method. 

BAYESIAN VARIABLE SCREENING 

The second method used was a Bayesian variable screening technique. An advantage it 
provides over both of the previous two methods is that it samples the entire response space 
instead of just the high and low edges, as well as providing a probabilistic assessment of 
parameter importance. A simple Markov Chain Monte Carlo (MCMC) method, called the 
Gibbs Sampler, was used to sample different models. The most probable models are visited 
most often, with the most probable effects occurring in the models more frequently than the rest 
of the effects. 

Bayesian methods make use of prior and posterior probabilities and distributions. Priors are 
assigned by the analyst; the sampling method then updates these values to posterior values. In 
an MCMC method, posteriors from one iteration become the priors of the next. In this case, two 
sets of prior probabilities were established. The first relates to whether main effects and two 
factor interactions occur in the model. Because comparison to the method of significant effects 
was desired, only main effects were given a probability (0.25). The rest of the prior 
probabilities, which describe two factor interactions, were set to zero. 

Priors relating to the probability of a particular model given a set of inputs must also be set. A 
simple linear regression model is used, 

where Y is the response feature vector, X is a vector of parameters and E is the error. The 
parameter coefficient, p is assumed to have a multivariate normal distribution and the error 
coefficient, o an inverse gamma distribution. Each of these distributions has associated 
parameters for which priors must be set. 

A Gibbs Sampler was then used to obtain a posterior set of screened variables, derived from 
their associated probabilities. The Gibbs Sampler repeatedly draws samples from the posterior 
distributions of each parameter, resulting in a sample that is approximately one from the joint 
distribution of the above parameters. Chipman, Hamada, and Wu note the chain length can be 
an implementation issue, as samples close together may be correlated. After trying a longer 
chain (10,000 samples) with a lag of 10 and discovering that results were nearly the same as 
using a chain 1000 samples long storing every sample, the shorter chain was chosen, with a 100 
sample long “burn-in” (to initialize the chain). 
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Results from the Bayesian variable screening method can be found in Figure 2 for main effects 
screening. In the Bayesian method, effects are important if their posterior probability is high 
compared to the rest of the parameters in question. 

Again the problem of features which are not discriminating enough arises. Features that have 
parameters with very low probabilities (generally <0.4), Le., models that are approaching the 
“mean model,” are omitted from comparison. Only results for the first moment features, E- 
time, E-PSD and E-SRS, are shown. While D and Tau were similar, E features yielded the most 
conclusive results. For most features, A, K, L, and M are important parameters to the model, 
matching the results found using the method of significant effects and general sensitivity 
analysis. Note that in the Bayesian screening method, effects G, H and J occasionally have high 
probabilities, as well. 

Comparison of Screening Methods 
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Figure 2: Comparison of screening methods, 
General Sensitivity Analysis (GSA), Method of 
Significant Effects (SE), and Bayesian Variable 
Screening (Bayes) for Accelerometer 3 
response features. Ordinate numbers 
correspond to parameter letters. 

Screening was also extended to two factor interactions. Prior probability for two factor 
interactions was set at 0.25 for interactions with both parents appearing in the model, 0.1 for 
interactions with one parent appearing in the model and 0.01 for interactions with no parents in 
the model. Distribution parameter priors used were the same as for main effects analysis. 
Screened two factor interactions for the most part included combinations of A, K, L, and M with 
occasional occurrences of B, H and J (nut preload, AI-A1 kinetic friction coefficient, and Ti-Ti 
kinetic friction coefficient). 

DISCUSSION OF VARIABLE SCREENING RESULTS 

All methods clearly indicate which effects are “important” and which may be omitted from the 
model, and these results are comparable. For the set of data that was screened, K, L, and M 
frequently appear as important model factors in both screening methods, with effects A, G, H 
and J appearing less frequently. The E features appear to be the most discriminating for nearly 
all the accelerometers, based on high contribution to total model variance in the significant 
effects method and its high probability levels in the Bayesian screening. Features used in the 
final model were A, G, H, K, L, and M based on the results obtained above. General sensitivity 
analysis provides a good first look at important parameters, however it only accounts for the 
high and low values of parameters and does not provide a probabilistic assessment of parameter 
importance. 
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COMMENTS ON IMPORTANT PARAMETERS 

The values chosen for parameters were based on engineering judgement and what little data 
there is in current literature. Only the input scaling was direclty measureable. We are currently 
devising ways to measure the other variable values, to verify that original values were correct. 

Measuring preloads in the threaded assembly has proven particularly difficult. Finite element 
models of the tape joint were developed. Original estimates of the tape joint preload were based 
on these models and rough statics calculations. Thread preloads were estimated using a torque 
wrench when possible. Strain gages were also used in the physical testing portion of the work, 
but placement was later determined to be inappropriate. Future measurements may involve 
using MEMS (micro-electomechanical systems) devices. 

Friction interfaces constitute four of the six important variables, and of these, three are lunetic 
friction interfaces. Because data on kinetic coefficients of friction were not available for the 
interfaces that we had, these values were based on published estimates for static coefficients of 
friction and checked by using the metamodel to solve the inverse problem. Parameter values 
were calculated through inverse means and the error between actual and predicted response 
values was minimized. However, recently a series of physical tests has been conducted in order 
to confirm values chosen for the friction interfaces. Because results from these tests have 
confirmed that original estimates were satisfactory, variable screening is not expected to change 
greatly when the new experimental values replace the estimated values. 

CONCLUSIONS AND FUTURE WORK 

Results achieved are encouraging, showing that the parameters screened are very likely to be at 
least part of some larger super-set of parameters which have an impact on the response of the 
threaded assembly. After screening parameters and using fractional factorial design, we now 
have feature models based on six important parameters, significantly reducing the number of 
runs needed to define the metamodel (64 runs for a model with third order terms). Effects 
chosen have been used in design of a higher order metamodel, which more accurately predicts 
the response of the model. 

Future work will concern determining which feature is appropriate to model and the fidelity 
with which it must be modeled. Additionally, as better ways are developed for measuring 
important parameters, parameter screening will be redone and the metamodels will be 
regenerated using revised values. Hence the process of parameter screening and metamodel 
generation is an iterative one in a real-world problem. 
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